## RAY Optics and Optical Instruments

## Diagram Based Questions :

1. Figure shows two rays A and B being reflected by a mirror and going as A' and B'. The mirror



- (a) is plane
- (b) is convex
- (c) is concave
- (d) may be any spherical mirror
- 2. Refraction of light from air to glass and from air to water are shown in figure (i) and figure (ii) below. The value of the angle  $\theta$  in the case of refraction as shown in figure (iii) will be



**3.** The following figure shows refraction of light at the interface of three media.



Correct the order of optical density of the three media is

- (a)  $d_1 > d_2 > d_3$ (b)  $d_2 > d_1 > d_3$ (c)  $d_3 > d_1 > d_2$ (d)  $d_2 > d_3 > d_1$
- The graph between angle of deviation (δ) and angle of incidence (i) for a triangular prism is represented by





5. An equilateral prism is placed on a horizontal surface. A ray PQ is incident onto it. For minimum deviation



Get More Learning Materials Here :





- (a) PQ is horizontal
- (b) QR is horizontal
- (c) RS is horizontal
- (d) Any one will be horizontal
- A glass prism of refractive index 1.5 is immersed 6. in water (refractive index 4/3). A light beam incident normally on the face AB is totally reflected to reach on the face BC if



## **Solution**

(i),

**CLICK HERE** 

и

2. **(b)** 
$${}^{a}\mu_{g} = \frac{\sin 60^{\circ}}{\sin 35^{\circ}}$$
 ... (i)

$${}^{a}\mu_{w} = \frac{\sin 60^{\circ}}{\sin 41^{\circ}}$$
 ... (ii)

$${}^{w}\mu_{g} = \frac{\sin 41^{\circ}}{\sin \theta} \qquad \dots (iii)$$

$$\frac{\sin 60^{\circ}}{\sin 41^{\circ}} \times \frac{\sin 41^{\circ}}{\sin \theta} = \frac{\sin 60^{\circ}}{\sin 35^{\circ}} \qquad \text{(Using}$$
(ii) and (iii)) =  $\sin\theta = \sin 35^{\circ} \qquad \theta = 35^{\circ}$ 

- (d) As  $r_1 \le i_1$  i.e., the incident ray bends towards 3. the normal  $\Rightarrow$  medium 2 is denser than medium 1. Or  $r_2 < i_1 \Rightarrow$  medium 3 is denser than medium 1. Also,  $r_2 > r_1 \Rightarrow$  medium 2 is denser than medium 3.
- 4. (c) For the prism as the angle of incidence (i) increases, the angle of deviation ( $\delta$ ) first decreases goes to minimum value and then increases.

- 5. (b) For minimum deviation, incident angle is equal to emerging angle.
   ∴ QR is horizontal.
- 6. (a) The phenomenon of total internal reflection takes place during reflection at P.

When  $\theta$  is the angle of incidence at P

Now, 
$${}^{\omega}_{g}\mu = \frac{{}^{a}_{g}h}{{}^{\omega}_{g}\mu} = \frac{1.5}{4/3} = 1.125$$
  
Putting in (i),  $\sin \theta = \frac{1}{1.125} = \frac{8}{9}$ 

 $\therefore$  sin  $\theta$  should be greater than or equal to  $\frac{8}{9}$ .





